
How-To Enhance User Interface in Oracle JDeveloper

Web applications usually have more than one page in them. In this part of the tutorial you add another
page - a Search page - to your application and use the ADF Task Flow Diagram to define the navigation
rules between the two pages. You then use features of the ADF Faces Framework to add extra
functionality to the pages. Finally, you create a reusable page fragment and add it to the DeptEmpPage
page.

This is the Search page for the application. Notice the list of values for the jobId and the relationship
between the Salary and Annual Salary fields. In this section you'll see how to coordinate the salary values
and to add an auto suggest behavior to the jobId.

Step 1: Create a Page Flow

1. In the Applications window locate the adfc-config file under the Page Flows node in
the ViewController project. Double-click it to open it in the editor. This is where you are going to
def ine the application's navigation.

2. Drag the DeptEmpPage.jsf file from the Applications window into the empty adfc-
config diagram.

3. From the Components window drag and drop a View activity into the adfc-config diagram, and
rename it query. This represents the new JSF page that you are about to create.

4. From the Components window click Control Flow Case and then click DeptEmpPage,and next
click the query page.

Name this line goQuery.

5. From the Components window choose another Control Flow Case and then create an opposite
f low from the query page to the DeptEmpPage. Name this flow back.

6. Double-click the query activity in the diagram to create the new page. In the Create JSF Page
dialog accept the default Facelets radio button, and click the Quick Start Layout radio button.

Select the default One Column category, type and layout, then click OK.

7. To add the employees search functionality to the page, open the Data Controls accordion, and
locate EmpDetails1. (If you do not see it click the Refresh button).

8. Expand the EmpDetails1 data control and expand the Named Criteria node below it. Select All

Queriable Attributes and drag it into the new query.jsf page. Create it as a Query > ADF
Query Panel.

9. In the Data Controls accordion select the EmpDetails1 data control and drag it into the center
area of the page below the query component. Create it as an ADF Form...

In the Edit Forms Details, check both the Row Navigation and the Submit Button checkboxes.
Click OK.

10. With the panelFormLayout still selected, use the Properties window to set the Rows property
to 5.

Also, set the Short Desc property to salary graph

11. In the Structure window locate the Submit button, right-click it and choose Insert After Button >
Button.

12. In the Properties window change the Text of the new button to Back and for the Action property
select back f rom the drop down list. This causes the button to perform the navigation you defined
in the page f low diagram.

13. Next you add transaction operations to the page to allow you to commit and rollback changes. In
the Data Controls Palette expand the application module level Operations node to locate the
commit and rollback operations. Drag the Commit operation into the Structure window before
the First Button. When prompted for a drop target choose ADF Button.

14. Repeat the same steps for the Rollback operation.

15. In the Properties window, for the Rollback and for the Commit buttons, reset the Disabled
property to default to make both buttons always selectable.

Move the mouse over then end of the property field and you'll see a light blue gear appear. Click
it to perform this operation.

16. Double-click the Query.jsf tab to maximize the page in the Design Editor. Your page should look
as follows:

17. Double-click the query.jsf tab again to return it to normal size.
18. Click the DeptEmpPage.jsf tab to switch back to the page. A quick way to navigate to this or any

other f ile is by using the global find box at the top right of JDeveloper and typing the file name
there.

Then just click the file name to open it in the editor.

19. In the page design, expand the Departments accordion. From the Components window, choose
a Button component and drag it into the Departments accordion between
the First and Previous buttons. Alternatively you can right-click the First button and choose
insert af ter > button to add the new button.

20. Using the Properties window change the Text of the button to Query and for the Action property
type goQuery or select it from the drop down list if available. This causes the button to perform
the navigation you defined in the page flow diagram.

21. Click the Save All icon on the JDeveloper menu bar to save your work, and then right-click
the DeptEmpPage.jsf page and choose Run.

22. When the page displays in your browser click the Query button to navigate to the new page. In
the Search page click Advanced to display detailed search criteria.

23. In the FirstName f ield accept the default Starts with, and type the letter G.
Press Search.The form below displays the record for Guy Himuro.

24. Experiment with the form, saving your search criteria, creating more complex queries and
updating data for employees. Note how this form displays a view of the data that matches the
def inition in the view object you created - including information for Department name as well as a
list of values for the Job id and the employee's annual salary.
You can also make changes to the data and commit and rollback your transactions as needed.

When you are f inished close the browser window.

Step 2: Use Partial Page Refresh

In the next steps you become acquainted with some of the features of the ADF Faces Framework. You
enhance your pages with additional Ajax functionality leveraging the declarative development features
of fered by ADF Faces components.

In the next few steps you use the partial page refresh capability offered by ADF Faces. You want
to make sure that if the Salary field is updated, that the Annual Salary is recalculated. In addition,
you don't want the entire page to refresh but rather just the affected fields. You will use an ADF
Faces feature called Partial Page Rendering or PPR to accomplish that behavior.

1. Open the query.jsf file in the Design Editor, if it is not already open. Select the Salary field. In the
Properties window set the value of the Id property to sal.

2. Still in the Properties window expand the Behavior node and set the AutoSubmit property
to True.

3. Either in the Design Editor or the Structure window locate the AnnualSalary field. Locate
the PartialTriggers property under the Behavior section and click the gear icon to its right to
choose Edit.

4. In the Edit Property dialog locate the Salary field and shuttle it to the right using the blue arrow.
Click OK.

5. Click the Save All icon on the JDeveloper menu bar to save your work,
and Run DeptEmpPage.jsf.

6. When the page displays, click the Query button in the Departments panel.

7. In the Search page search for employees whose first name begins with A%.

Note the salary and annual salary values.

8. Update the Salary field and then tab out of it. Notice the immediate change to
the AnnualSalary field once you leave the Salary field. However this is the only field that is
ref reshed (not the whole page).

9. Close the browser.

Step 3: Use the ADF Auto Suggest Behavior

The af:autoSuggestBehavior component displays a drop down list of suggested items when the user
types into an input component. To use the auto-suggest functionality in a declarative way you need a
model-driven list of values on your model project, which will be the base for the suggestedItems list.
Earlier you added a list of values to the JobId field so in this example you use that field.

1.
In the query page, select the JobId field.

2. In the Components window expand the Operations node, and locate Auto Suggest Behavior in
the Behavior section. Drag and drop the Auto Suggest Behavior operation onto the JobId field.

3. Select the af:autoSuggestBehavior component in the Structure window. In the Properties
window, set the SuggestedItems property to #{bindings.JobId.suggestedItems}. You can enter
the value or use the Method Expression Builder by clicking the gear icon next to the property.

4. Save your work and then Run the query page.

5. Type 121 in the EmployeeId field, and click the Search button. In the record for Adam Fripp
update the JobId field by typing 's' in it. A number of jobs beginning with 's' are suggested.

6. Add 'a' af ter the 's' and see the list of suggestions modified accordingly.

7. Choose Sales Representative from the remaining options, to populate the field.

8. Close the browser without saving the change.

Step 4: Use Drop Down Menus and Operation Components

In this step you add a drop down menu to a page and use a couple of ADF Faces operation components
to add Javascript-based operations to the page. On component will export table data into an Excel
spreadsheet and the other will create a printable page.

1. In the DeptEmpPage.jsf file click inside the menus facet in the panel collection surrounding the
Employees table. Right-click and from the context menu choose Insert Inside Facet
menus > Menu.

2. In the Properties window set the Text property to My Options.

3. In the Properties window expand the Behavior node and set the Detachable property to true.

4. In the Structure window right-click the menu component and choose Insert inside af:menu - My
Options > Menu Item.

5. In the Properties window set the Text property of the new menu item to Export to Excel.

6. With the new Export to Excel menu item still selected in the Structure window, expand
the Listeners section of the Operations node of the the ADF Faces components in the
Components window.
Locate the Export Collection Action Listener component and drag it onto the Export to
Excel menu option in the Structure window.

7. In the Insert Export Collection Action Listener dialog click the gear icon next
to ExportedId field and choose Edit.

8. In the Edit Property dialog navigate through the page structure to locate the table -
t1 component and select it. Click OK.

9. From the Type drop down list select excelHTML and click OK.

10. Add another menu option to the menu. In the Structure window right-click the Export to
Excel menu component and from the context menu choose Insert After Menu Item > Menu
Item.

11. Set the Text property of this new menu option to Printable Page.

12. In the Behavior section under the Operations node of the Components window select the Show
Printable Page Behavior operation to add it to the new menu item. Drag and drop it onto the
new menu option you created.

13. Click the Save All icon on the JDeveloper menu bar to save your work, and then
choose Run.

14. When the page displays click the new menu and detach it.

Click the 'x' to close the menu.

15. Then invoke each one of the menu options you created, for example Export to Excel.

You may need to accept the download of the file in the browser window to be able to access the
Excel f ile, and it should be found in your default 'download'. directory..

16. Try the Printable Page menu option.

The page is ready for printing.

Close the browser window.

Step 5: Add CRUD Operation Components to your Page

The next few tasks examine some of the data operations that JDeveloper makes available to view
objects. You see how to add a Delete operation and a CreateInsert operation. When the user clicks the
CreateInsert button to insert the new row you want the table to refresh to display the new empty row. To
do this you again use the Partial Page Refresh feature that was covered in Step 2 of this part of the
tutorial.The view object uses a bind variable to pass the employee's email into the query.

1. Click the query.jsf tab to return to the Query page, opening the Structure window. In the Data
Controls accordion expand the EmpDetails1 node and then the Operations node below it.
Select the CreateInsert operation.

2. Drag the CreateInsert operation in the Structure window onto the af:panelGroupLayout -
horizontal in the footer facet of the employees form. Create it as an ADF Button. Hint: expand
af :panelFormlayout -5 > Panel Form Layout Facets > af:panelGroupLayout - vertical >
af :panelGroupLayout - horizontal.

3. In the Properties window set the Id property for the button to CreateInsert.

4. Still in the Properties window expand the Behavior node and in the PartialTriggers property
choose Edit from the drop down list.

5. In the Edit window scroll through the page's components until you find the CreateInsert button.
Shuttle it into the Selected pane.

Click OK. This action defines the CreateInsert component as the trigger that will cause the table
to ref resh.

6. In the same way add a Delete operation by dropping the Delete operation
f rom EmpDetails1 onto the panelGroupLayout in the page footer. As before, create it as an ADF
button.

7. The two new buttons display at the bottom of the query page.

8. Save your work and then Run the Query page.
9. When the page displays type F% in the LastName field and click the Search button. The f irst F%

employee record displays.

10. Click the CreateInsert button. The page refreshes and the fields are cleared (except for the
HireDate f ield, which you set to default to the current date) so that a new record can be inserted.

11. Close the browser without committing.

Step 6: Create a Query-only Business Service Based on Parameters

In this step you create a view object that allows end users to search for an employee's name based on
their email address. The view object uses a bind variable to pass the employee's email into the query.

1. In the Applications window locate the demo.model package and right-click it to choose New
View Object....

2. In the Create View Object wizard set the Name property to EmpByEmail and choose the SQL
Query radio button as the data source. Click Next.

3. In Step 2 of the Create View Object wizard type the following query:

select first_name, last_name from employees where email = :p_email

The ':' before p_email means that it is a variable that will be passed to the query.

Click the Test and Explain button to verify your query.

Click Close and then click Next.

4. In Step 3 of the Create View Object wizard, click the New button to define a new bind variable.
Set the Name property to p_email.

Click the Control Hints tab and set the Label Text to Email.

5. Click Next a few more times to accept all the defaults, until you get to step 8 of the wizard.

Do NOT specify a Key Attribute, when prompted.

Here check the Add to Application Module check box to include your new view in the data
model.
Click the Finish button.

6. Save your work and then run the Business Component Browser to test the new view. Double-
click the new EmpByEmail1 view and when prompted to insert a value for the variable
enter SKING and press OK to get the results for this email address. (To run the Business
Components Tester, right-click the application module and select Run)

7. Notice that the Business Components Browser shows only King.
8. Close the Business Component Browser.

Step 7: Create a Reusable Page Fragment

In this step you create a reusable page fragment. You then embed the view object you created in the last
step into the page fragment, and finally you use the page fragment in the DeptEmpPage page

1. First create a new task flow specifically for this page. In the Applications Navigator right-click
the ViewController project and choose New > From Gallery.

2. In the Web Tier > JSF/Facelets category choose ADF Task Flow.

Click OK.

3. In the Create Task Flow dialog set the File Name property to search-email-flow.xml.
Verify that the Create As Bounded Task Flow and Create with Page Fragments checkboxes
are both checked.

Click OK.

4. In the Design Editor drag a View component from the Components window onto the empty
diagram and name it searchEmail. You only use a single page in this flow, but you can have
bounded task flows with multiple pages and still include them in other JSF pages.

5. Double-click the new searchEmail view component to create the page fragment for it.
Accept all the defaults in the dialog that displays and make sure the file name

is searchEmail.jsff. This creates the page as a page fragment that can be included in other JSF
pages. Click OK.

6. An empty page displays in the Design Editor. Expand the Data Controls accordion and, if
necessary, click the Refresh button to ensure that the new EmpByEmail1 data control appears
in the list.

7. Expand the new EmpByEmail1 view and the Operations node beneath it. Select
the ExecuteWithParams operation. You are going to use this operation to execute the query for
this view passing it the necessary parameter.

8.
Drag the ExecuteWithParams operation to your new page, and create it as an ADF Parameter
Form.

9. In the Edit Form Fields dialog change the display label for the p_email value from default
to Email. Click OK.

10. In the Design Editor for the page, click the ExecuteWithParams button and use the Properties
window to change the Text property to Find Details.

11. From the Data Controls accordion, drag the EmpByEmail1 collection onto the page beneath the
button. Create it as a Form > ADF Form....

12. Select Read-Only Form and accept the remaining defaults presented in the Edit Form Fields
dialog. Then click OK.
Save your work.

The page should look like this:

13. The new bounded task flow now contains a page fragment; next you include the complete
bounded task flow inside another JSF page.
In the Applications window locate the DeptEmpPage.jsf file and open it in the Design Editor, if it
is not already open. From the Components window Layout section drag and drop
a Separator component into the left accordion in the DeptEmpPage.jsf page beneath
the Departments form.

14. Add the new flow you created as a region to the existing page.
From the Applications window drag and drop search-email-flow.xml into the left accordion in
the DeptEmpPage.jsf page beneath the new separator. Create it as a Region.

15. Your page should now look like the screen shot below.

16. Save your work and then Run the updated DeptEmpPage.jsf page.
When the page displays in your browser test the new functionality by entering an email value
(SKING) in the Email field and pressing the Find Details button.

17. The employee name information is returned.

18. Close the browser when you are done.

Step 8: Launching Pages with a Panel Springboard

In this step you use a panel springboard as a launch pad fro your pages. Once you've created your pages
and task flows, you can hook them together using a panelSpringboard component. All pages must be
packaged in bounded task flows as page fragments and added as regions. Each page or task flow can
have an icon associated with it and you can determine the behavior of the items, once one is selected.

1. In preparation for the next set of steps, include some icons into your application. Right click on
each of the following 3 images and save the the icons to your
application's.../public_html directory.

2. Then back in JDeveloper, select the ViewController project and click the refresh icon. In the drop
down menu, select Refresh ViewController.jpr.

The Applications navigator will now display the included images.

Now we are ready to create the components for the springboard.

The f irst thing we need to do is create a couple of pages and place them on bounded task flows
as page fragments. There are a few different ways to do this, we'll show you one.

3. Right click the View Controller project and in the context menu select, New > Page...

4. Name it Departments.jsf and create it using a blank page.

5. From the Data Controls palette, expand the AppModuleDataControl and drag and drop
the DepartmentsView1 onto the page.
In the popup menu, select Table/List View - ADF Table...

6. In the Create Table dialog, click OK to accept all the fields.

7. The resulting page should look like the image below. Save your work.

8. Select the ViewController project, and from the context menu select New - ADF Task Flow...

9. Name it depts-task-flow-definition.xml and deselect the Create with Page
Fragments checkbox. Click OK to create the task flow.

10. From the Applications navigator, drag the Departments.jsf page onto the task flow and drop it.

The resulting page is now part of the bounded task flow. .

11. Next, right click the task flow and select Convert To Task Flow With Page Fragments...

Later on we'll create a page containing the panel springboard component. We can then add this
task f low as a region on the springboard.

In the popup, click OK to complete the conversion process.

Save all your work.

Now we'll do the same process for an employees page and task flow. Then we'll have two
dif ferent components to add to the springboard.

12. Right click the View Controller project and in the context menu select, New - Page...

13. Name it Employees.jsf and create it using a blank page.

14. From the Data Controls palette, expand the AppModuleDataControl and drag and drop
the EmployeeView1 onto the page.
In the popup menu, select ADF Form ...

15. In the Create Form dialog, select the Read-Only Form checkbox and then delete the following
f ields.

JobId, Salary, CommissionPct, ManagerId, and DepartmentId

Then click OK.

16. The resulting page should look like the image below.

Save your work.

17. Select the ViewController project, and from the context menu select New - ADF Task Flow...

18. Name it emps-task-flow-definition.xml and deselect the Create with Page
Fragments checkbox. Click OK to create the task flow.

19. From the Applications navigator, drag the Employees.jsf page onto the task flow and drop it.

20. Next, right-click inside the task flow and select Convert To Task Flow With Page Fragments...

Remember, later on we'll create a page containing the panel springboard component. We can
then add this task flow as a region on the springboard.

21. In the popup, click OK to finish the process.
22. Save your work.
23. Create a page to contain the springboard. Create it in the ViewController project and name

it springboard.jsf and select the Create Blank Page radio button. Then click OK.

24. From the Components window, expand the Layout node and scroll to the Interactive Containers
and Headers section. Then, select and drag and drop a Panel Springboard onto the page

25. Select the panelSpringboard component and in the Properties window, set the Display Mode
to grid.

26. Inside the panelSpringboard component, right click and select Insert Inside Panel SpringBoard
- Show Detail item

Add another detail item to the springboard

27. For each of the showDetailItems, use the Properties window to set the Text values.

showDetailItem 1 = Show Departments
showDetailItem 2 = Employees

Save your work.

28. For each showDetailItem, select and set the Icon property to the image names as follows..

Show Departments = 36-toolbox.png

Employee = 19-gear.jpg

To set the property, move your cursor to the right side of the Icon property and click on the blue
gear.

Then click it, and select Edit.

29.

Select the appropriate image and click OK.

When prompted to allow the image to be put in the 'resources' directory, click No.

The next step is to determine and associate what page or task flow the springboard item will
invoke. You can do this by dragging and and dropping a page or task flow onto the springboard
detail item.

30. Drag depts-task-flow-definition and drop it on the Show Departments detail item.

When you release the mouse button, you're prompted for how you want the item created. In our
case, create the item as a Region.

31. Drag the emps-task-flow-definition to the Employees detailItem and create it as a Region.

32. Save your work.

33. Finally, right click in the springboard.jsf page and select Run.

34. Click on each of the icons to see the see how the Springboard allows you to launch individual
task f lows.

When one item is selected the icons move to the top of the browser, and the page details appear
below.

Click another icon and the page switches.

35. Close your browser and exit JDeveloper.

Summary

In this tutorial you built a small Web application that interacts with a database. You learned how to:

• Build the business services that supply the data to the application

• Create a data-bound JSF page

• Enhance the page by adding more complex operations

• Add a second JSF page to the application and create a task flow to define the navigation between the pages

• Create a reusable page fragment containing a business service based on parameters

• Add a springboard to launch your application components

Courtesy: https://docs.oracle.com/cd/E37547_01/tutorials/tut_rich_app/tut_rich_app_3.html

Modified: 2021.10.04.7.45.AM
Dököll Solutions, Inc.

https://docs.oracle.com/cd/E37547_01/tutorials/tut_rich_app/tut_rich_app_3.html

